Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2018
    In:  Journal of Climate Vol. 31, No. 22 ( 2018-11-15), p. 9313-9333
    In: Journal of Climate, American Meteorological Society, Vol. 31, No. 22 ( 2018-11-15), p. 9313-9333
    Abstract: Oceanic heat uptake (OHU) is a significant source of uncertainty in both the transient and equilibrium responses to increasing the planetary radiative forcing. OHU differs among climate models and is related in part to their representation of vertical and lateral mixing. This study examines the role of ocean model formulation—specifically the choice of the vertical coordinate and the strength of the background diapycnal diffusivity K d —in the millennial-scale near-equilibrium climate response to a quadrupling of atmospheric CO 2 . Using two fully coupled Earth system models (ESMs) with nearly identical atmosphere, land, sea ice, and biogeochemical components, it is possible to independently configure their ocean model components with different formulations and produce similar near-equilibrium climate responses. The SST responses are similar between the two models ( r 2 = 0.75, global average ~4.3°C) despite their initial preindustrial climate mean states differing by 0.4°C globally. The surface and interior responses of temperature and salinity are also similar between the two models. However, the Atlantic meridional overturning circulation (AMOC) responses are different between the two models, and the associated differences in ventilation and deep-water formation have an impact on the accumulation of dissolved inorganic carbon in the ocean interior. A parameter sensitivity analysis demonstrates that increasing the amount of K d produces very different near-equilibrium climate responses within a given model. These results suggest that the impact of the ocean vertical coordinate on the climate response is small relative to the representation of subgrid-scale mixing.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages