Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Journal of Hydrometeorology Vol. 16, No. 1 ( 2015-02-01), p. 232-243
    In: Journal of Hydrometeorology, American Meteorological Society, Vol. 16, No. 1 ( 2015-02-01), p. 232-243
    Abstract: In this paper, the Weather Research and Forecasting (WRF) Model is used to investigate the sensitivity of precipitation to soil moisture and urban areas in the Netherlands. The average output of a 4-day event during 10–13 May 1999 for which the individual days had similar synoptical forcing is analyzed. Four simulations are conducted to test the impact of soil moisture changes on precipitation. A positive soil moisture–precipitation feedback is found, that is, wet (dry) soils increase (decrease) the amount of precipitation. Three additional experiments are executed, two in which urban areas in the Netherlands are expanded and one where urban areas are completely removed. Expansion of urban areas results in an increase of the sensible heat flux and a deeper planetary boundary layer, similar to reducing soil moisture. Expanding urban areas reduces precipitation over the Netherlands as a whole, but the local response is not clear. Within existing urban areas, mean and maximum temperature increases of 0.4 and 2 K, respectively, are found under an urban coverage scenario for 2040. The ratio of evapotranspiration to precipitation (a measure of the soil moisture–precipitation feedback) in the urbanization experiments is only about one-third (23%) of that in the soil moisture experiments (67%). Triggering of precipitation, on the other hand, is relatively high in the urban expansion experiments. The effects of reduced moisture availability and enhanced triggering in the urban expansion experiments compensate each other, leading to the moderate reduction in precipitation.
    Type of Medium: Online Resource
    ISSN: 1525-755X , 1525-7541
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 2042176-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages