Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Atmospheric and Oceanic Technology Vol. 31, No. 1 ( 2014-01-01), p. 181-196
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 31, No. 1 ( 2014-01-01), p. 181-196
    Abstract: This paper presents a detailed quality assessment of a novel underwater sensor for the measurement of CO2 partial pressure (pCO2) based on surface water field deployments carried out between 2008 and 2011. The commercially available sensor, which is based on membrane equilibration and nondispersive IR (NDIR) spectrometry is small and can be integrated into mobile platforms. It is calibrated in water against a proven flow-through pCO2 instrument within a custom-built calibration setup. The aspect of highest concern with respect to achievable data quality of the sensor is the compensation for signal drift inevitably connected to absorption measurements. Three means are used to correct for drift effects: (i) a filter correlation or dual-beam setup, (ii) regular zero gas measurements realized automatically within the sensor, and (iii) a zero-based transformation of two sensor calibrations flanking the time of sensor deployment. Three sensors were tested against an underway pCO2 system during two major research cruises, providing an in situ temperature range from 7.4° to 30.1°C and pCO2 values between 289 and 445 μatm. The average difference between sensor and reference pCO2 was found to be −0.6 ±3.0 μatm with an RMSE of 3.7 μatm.
    Type of Medium: Online Resource
    ISSN: 0739-0572 , 1520-0426
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages