Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Monthly Weather Review Vol. 148, No. 1 ( 2020-01-01), p. 353-375
    In: Monthly Weather Review, American Meteorological Society, Vol. 148, No. 1 ( 2020-01-01), p. 353-375
    Abstract: Damaging gusts in windstorms are represented by crude subgrid-scale parameterizations in today’s weather and climate models. This limitation motivated the Wind and Storms Experiment (WASTEX) in winter 2016–17 in the Upper Rhine Valley over southwestern Germany. Gusts recorded at an instrumented tower during the passage of extratropical cyclone “Thomas” on 23 February 2017 are investigated based on measurements of radial wind with ≈70-m along-beam spacing from a fast-scanning Doppler lidar and realistic large-eddy simulations with grid spacings down to 78 m using the Icosahedral Nonhydrostatic model. Four wind peaks occur due to the storm onset, the cold front, a precipitation line, and isolated showers. The first peak is related to a sudden drop in dewpoint and results from the downward mixing of a low-level jet and a dry layer within the warm sector characterized by extremely high temperatures for the season. While operational convection-permitting forecasts poorly predict the storm onset overall, a successful ensemble member highlights the role of upstream orography. Lidar observations reveal the presence of long-lasting wind structures that result from a combination of convection- and shear-driven instability. Large-eddy simulations contain structures elongated in the wind direction that are qualitatively similar but too coarse compared to the observed ones. Their size is found to exceed the effective model resolution by one order of magnitude due to their elongation. These results emphasize the need for subkilometer-scale measuring and modeling systems to improve the representation of gusts in windstorms.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages