Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Weather and Forecasting, American Meteorological Society, Vol. 28, No. 4 ( 2013-08-01), p. 1057-1078
    Abstract: A new operational wave forecasting system has been implemented at the National Centers for Environmental Prediction (NCEP) using the third public release of WAVEWATCH III. The new system uses a mosaic of grids with two-way nesting in a single model. This global system replaces a previous operational wave modeling suite (based on the second release of WAVEWATCH III). The new forecast system consists of nine grids at different resolutions to provide the National Weather Service (NWS) and NCEP centers with model guidance of suitable resolution for all areas where they have the responsibility of providing gridded forecast products. New features introduced in WAVEWATCH III, such as two-way nesting between grids and carving out selected areas of the computational domain, have allowed the operational model to increase spatial resolution and extend the global domain closer to the North Pole, while at the same time optimizing the computational cost. A spectral partitioning algorithm has been implemented to separate individual sea states from the overall spectrum, thus providing additional products for multiple sea states. Field output data are now packed in version 2 of the gridded binary (GRIB2) format and apart from the standard mean wave parameters, they also include parameters of partitioned wave spectra. The partitioning is currently limited to three fields: the wind-wave component, and primary and secondary swells. The modeling system has been validated against data using a multiyear hindcast database as well as archived forecasts. A new software tool developed by the U.S. Army Corps of Engineers (USACE) is used to extend the analysis from overall error estimates to separate skill scores for wind seas and swells.
    Type of Medium: Online Resource
    ISSN: 0882-8156 , 1520-0434
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 2025194-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages