Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2018
    In:  Weather and Forecasting Vol. 33, No. 4 ( 2018-08-01), p. 933-953
    In: Weather and Forecasting, American Meteorological Society, Vol. 33, No. 4 ( 2018-08-01), p. 933-953
    Abstract: The High-Resolution Rapid Refresh–Alaska (HRRR-AK) modeling system provides 3-km horizontal resolution and 0–36-h forecast guidance for weather conditions over Alaska. This study evaluated the experimental version of the HRRR-AK system available from December 2016 to June 2017, prior to its operational deployment by the National Centers for Environmental Prediction in July 2018. Surface pressure observations from 158 National Weather Service (NWS) stations assimilated during the model’s production cycle and pressure observations from 101 USArray Transportable Array (TA) stations that were not assimilated were used to evaluate 265 complete 0–36-h forecasts of the altimeter setting (surface pressure reduced to sea level). The TA network is the largest recent expansion of Alaskan weather observations and provides an independent evaluation of the model’s performance during this period. Throughout the study period, systematic differences in altimeter setting between the HRRR-AK 0-h forecasts were larger relative to the unassimilated TA observations than relative to the assimilated NWS observations. Upon removal of these initial biases from each of the subsequent 1–36-h altimeter setting forecasts, the model’s 36-h forecast root-mean-square errors at the NWS and TA locations were comparable. The model’s treatment of rapid warming and downslope winds that developed in the lee of the Alaska Range during 12–15 February is examined. The HRRR-AK 0-h forecasts were used to diagnose the synoptic and mesoscale conditions during this period. The model forecasts underestimated the abrupt increases in the temperature and intensity of the downslope winds with smaller errors as the downslope wind events evolved.
    Type of Medium: Online Resource
    ISSN: 0882-8156 , 1520-0434
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 2025194-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages