In:
Weather, Climate, and Society, American Meteorological Society, Vol. 15, No. 3 ( 2023-07), p. 571-586
Abstract:
The impact of climate change on subsistence agriculture is a major concern in the developing world. The vulnerability of the coastal regions to climate change has been highlighted, in particular. The present study assessed the impact of climate change on subsistence rice farming on the eastern Indian coast using an integrated approach of statistical trend analysis by the Mann–Kendall test and Sen’s slope estimation of climate data and remote sensing–based land-cover analyses using the normalized difference vegetation index (NDVI), normalized difference water index (NDWI), and land surface temperature (LST) complemented by a questionnaire-based perception survey among the farming community. There has been a noticeable change in both ambient temperature and LST in the region. The delayed arrival of the monsoon critically impacts the cropping calendar. The crop harvest season has shifted farther into a time of the year that is prone to weather extremes. Analyses of NDVI and NDWI also indicate a shift in the cropping calendar. Over the years, there was an increasing degree of negative correlation between LST and NDVI in November, which indicates increasing water stress for crops in that time juncture. This may further cause crop sterility and yield loss. The study also reveals large-scale conversion of paddy-growing agricultural land into prawn aquaculture ponds. Farmers attributed such land-use change to cultivation stress caused by the delayed monsoon and consequent crop loss from weather extremes and changes in crop agronomic conditions. Farmers also report increased pest attacks and attribute that to an increasing temperature regime.
Type of Medium:
Online Resource
ISSN:
1948-8327
,
1948-8335
DOI:
10.1175/WCAS-D-21-0175.1
Language:
Unknown
Publisher:
American Meteorological Society
Publication Date:
2023
detail.hit.zdb_id:
2628859-X