Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Energy Exploration & Exploitation, SAGE Publications, Vol. 35, No. 3 ( 2017-05), p. 388-402
    Abstract: The aim of this study was to assess the potential of utilizing Lactobacillus delbrüeckii spp. bulgaricus in order to improve the characteristics of dairy wastewater and produce biomethane. Nuclear magnetic resonance was utilized to assess the metabolites present in the unprocessed wastewater. It was determined that wastewater is a good source of important bio-refinery relevant compounds and therefore wastewater has a potential to be utilized during fermentation as nutrients source. Upon wastewater fermentation, the chemical oxygen demand and biological oxygen demand significantly decreased (respectively 97.0 and 97.8%). Protocols were tested for one- and two-stage fermentation. During the one-stage fermentation, lactic acid bacteria were not added to the wastewater. During the two-stage fermentation, acetogenesis and methanogenesis occurred separately with the addition of L. delbdueckii during the acetogenesis stage. The highest yield of methane was obtained from wastewater upon two-stage fermentation (76% two-stages compared to 38% one-stage). Therefore, L. delbrüeckii have the potential to be utilized to ferment dairy WWs and produce methane. Such treatment of wastewater not only produces methane, but also decreases the polluting effect of the waste streams, by reducing the chemical oxygen demand and biological oxygen demand to 0.199 and 0.031 g/l, respectively.
    Type of Medium: Online Resource
    ISSN: 0144-5987 , 2048-4054
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2017
    detail.hit.zdb_id: 2026571-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages