Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    SAGE Publications ; 2021
    In:  Transportation Research Record: Journal of the Transportation Research Board Vol. 2675, No. 9 ( 2021-09), p. 1631-1642
    In: Transportation Research Record: Journal of the Transportation Research Board, SAGE Publications, Vol. 2675, No. 9 ( 2021-09), p. 1631-1642
    Abstract: Compaction is one of the most critical steps in asphalt pavement construction. Traditional compaction relies heavily on engineering experience and post-construction quality control and can lead to under/over compaction problems. The emerging intelligent compaction technology has improved compaction quality but is still not successful in obtaining mixture properties of a single pavement layer. Besides, very few studies have discussed the internal material responses during field and laboratory compaction to explain the meso-scale (i.e., particle scale) compaction mechanism. Knowledge in those areas may greatly promote the development of smart compaction. Therefore, this study aims to investigate the kinematic behavior of the asphalt mixture particles (translation and rotation) under six types of field and laboratory compaction methods and establish the relationship between the field and the laboratory compaction by using a real-time particle motion sensor, SmartRock. It was found that particle movement pattern was mainly affected by the compaction mode. At the meso-scale where particle behavior is the focus, the kneading effects of a pneumatic-tire roller can be simulated by laboratory gyratory and rolling wheel compaction, and the vibrating effects of a vibratory roller can be simulated by Marshall compaction. However, none of those laboratory compaction methods can completely simulate the field compaction. Under vibratory rolling, particle acceleration decreased fast in the breakdown rolling stage. Under pneumatic-tire rolling, particle angular position change was related to aggregate skeleton, and particle relative rotation showed a decreasing trend that was consistent with the laboratory gyratory compaction results. Those kinematic responses can potentially be used to monitor density change in field compaction.
    Type of Medium: Online Resource
    ISSN: 0361-1981 , 2169-4052
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2021
    detail.hit.zdb_id: 2403378-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages