Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    SAGE Publications ; 2017
    In:  Journal of Fire Sciences Vol. 35, No. 3 ( 2017-05), p. 207-234
    In: Journal of Fire Sciences, SAGE Publications, Vol. 35, No. 3 ( 2017-05), p. 207-234
    Abstract: This article examines the thermo-physical behaviour of an inorganic-based intumescent coating, tested with bench-scale cone calorimetry, in order to promote the understanding of its intumescence and to contribute to the optimisation of its thermal insulation performance. In the test, the specimen underwent the following phenomena simultaneously: (1) thermo-kinetic endothermic water vaporisation; (2) formation of micro-scale pores in its internal volume; (3) expansion of its volume; (4) variations in thermal boundaries. These simultaneous phenomena cause several changes in internal–external conditions given to the test sample: (1) loss of mass (water molecules); (2) reduction of effective thermal conductivity owing to its porous structure; (3) increase in length of the conductive heat transfer path across its expanding volume; (4) irradiance intensification and additional heat transfer generation on its moving boundaries, exposed to the heat source and surroundings. This interacting thermo-physical behaviour impedes the heat transfer to the underlying substrate. It is therefore comprehensively explained by finite element analysis, associated with the experimental data obtained from a thermogravimetric analyser, differential scanning calorimetry, electric furnace and cone calorimeter tests. The numerical predictions agreed with the physical measurements with consistent accuracy, in terms of both histories of substrate temperature and coating-thickness expansion. This combined numerical–experimental approach enables clear interpretation on the process of intumescence, the impediment mechanism of heat transfer and the critical factors of the material’s behaviour.
    Type of Medium: Online Resource
    ISSN: 0734-9041 , 1530-8049
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2017
    detail.hit.zdb_id: 2088221-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages