Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    SAGE Publications ; 2022
    In:  Social Science Computer Review Vol. 40, No. 3 ( 2022-06), p. 844-853
    In: Social Science Computer Review, SAGE Publications, Vol. 40, No. 3 ( 2022-06), p. 844-853
    Kurzfassung: Machine learning and other computer-driven prediction models are one of the fastest growing trends in computational social science. These methods and approaches were developed in computer science and with different goals and epistemologies than those in social science. The most obvious difference being a focus on prediction versus explanation. Predictive modeling offers great potential for improving research and theory development, but its adoption poses some challenges and creates new problems. For this reason, Hofman et al. published recommendations for more effective integration of predictive modeling into social science. In this communication, I review their recommendations and expand on some additional concerns related to current practices and whether prediction can effectively serve the goals of most social scientists. Overall, I argue they provide a sound set of guidelines and a classification scheme that will serve those of us working in computational social science.
    Materialart: Online-Ressource
    ISSN: 0894-4393 , 1552-8286
    Sprache: Englisch
    Verlag: SAGE Publications
    Publikationsdatum: 2022
    ZDB Id: 2021894-1
    SSG: 3,4
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz