Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    SAGE Publications ; 2021
    In:  Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering Vol. 235, No. 8 ( 2021-07), p. 2166-2175
    In: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, SAGE Publications, Vol. 235, No. 8 ( 2021-07), p. 2166-2175
    Abstract: Steering feel is closely related to the matching of the EPS assist characteristic curve, however, due to the lack of theoretical basis for the design of the EPS assist characteristic curve, the steering feel can only be changed indirectly by adjusting the magnitude of assist, which is very difficult. To control steering feel directly and reduce the difficulty of adjustment, this paper proposes a decomposition and calculation method of the EPS assist characteristic curve. At first, the mechanism of the EPS assist characteristic curve is revealed. It is found that the process of designing and adjusting the EPS assist characteristic curve is a process of changing the corresponding relationship between the steering wheel torque and the steering motion intensity based on considering vehicle dynamic characteristics. On this basis, the driver’s desired steering motion intensity and the pinion angle position are taken as intermediate variables, the EPS assist characteristic curve is decomposed into three parts: driving style, steady-state inverse characteristics of chassis dynamics, and steady-state inverse characteristics of steering system dynamics. According to the designed driving style and the calibrated steady-state inverse characteristics of chassis dynamics and steering system dynamics, the EPS assist characteristic curve can be directly calculated. The test results show that the EPS system adopting assist characteristic curve calculated can realize the designed driving style and provide consistent and controllable steering feel on the premise of meeting the requirements of steering portability and road feel.
    Type of Medium: Online Resource
    ISSN: 0954-4070 , 2041-2991
    RVK:
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2021
    detail.hit.zdb_id: 2032754-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages