Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    SAGE Publications ; 2019
    In:  Cell Transplantation Vol. 28, No. 6 ( 2019-06), p. 747-755
    In: Cell Transplantation, SAGE Publications, Vol. 28, No. 6 ( 2019-06), p. 747-755
    Kurzfassung: Induced pluripotent stem cells (iPS cells) are promising cell source for stem cell replacement strategy applied to brain injury caused by traumatic brain injury (TBI) or stroke. Neural stem cell (NSCs) derived from iPS cells could aid the reconstruction of brain tissue and the restoration of brain function. However, tracing the fate of iPS cells in the host brain is still a challenge. In our study, iPS cells were derived from skin fibroblasts using the four classic factors Oct4, Sox2, Myc, and Klf4. These iPS cells were then induced to differentiate into NSCs, which were incubated with superparamagnetic iron oxides (SPIOs) in vitro. Next, 30 TBI rat models were prepared and divided into three groups ( n = 10). One week after brain injury, group A & B rats received implantation of NSCs (labeled with SPIOs), while group C rats received implantation of non-labeled NSCs. After cell implantation, all rats underwent T2*-weighted magnetic resonance imaging (MRI) scan at day 1, and 1 week to 4 weeks, to track the distribution of NSCs in rats’ brains. One month after cell implantation, manganese-enhanced MRI (ME-MRI) scan was performed for all rats. In group B, diltiazem was infused during the ME-MRI scan period. We found that (1) iPS cells were successfully derived from skin fibroblasts using the four classic factors Oct4, Sox2, Myc, and Klf4, expressing typical antigens including SSEA4, Oct4, Sox2, and Nanog; (2) iPS cells were induced to differentiate into NSCs, which could express Nestin and differentiate into neural cells and glial cells; (3) NSCs were incubated with SPIOs overnight, and Prussian blue staining showed intracellular particles; (4) after cell implantation, T2*-weighted MRI scan showed these implanted NSCs could migrate to the injury area in chronological order; (5) the subsequent ME-MRI scan detected NSCs function, which could be blocked by diltiazem. In conclusion, using an in vivo MRI tracking technique to trace the fate of iPS cells-induced NSCs in host brain is feasible.
    Materialart: Online-Ressource
    ISSN: 0963-6897 , 1555-3892
    Sprache: Englisch
    Verlag: SAGE Publications
    Publikationsdatum: 2019
    ZDB Id: 2020466-8
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz