Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    SAGE Publications ; 2019
    In:  Journal of Diabetes Science and Technology Vol. 13, No. 4 ( 2019-07), p. 698-707
    In: Journal of Diabetes Science and Technology, SAGE Publications, Vol. 13, No. 4 ( 2019-07), p. 698-707
    Abstract: Self-monitoring blood glucose (SMBG) is facilitated by application available to analyze these data. They are mainly based on descriptive statistical analyses. In this study, we are proposing a method inspired by artificial intelligence algorithm for displaying glycemic data in an intelligible way with high-level information that is compatible with the short duration allocated to medical visits. Method: We propose a display method based on a numerical glycemic data conversion using a qualitative color scale that exhibits the patient’s overall glycemic state. Moreover, a machine learning algorithm inputs these displays to exhibit recurrent glycemic pattern over configurable extended time period. Results: A demonstrator of our method, output as a glycemic map, could be used by the physician during quarterly patient consultations. We have tested this methodology retrospectively on a database in order to observe the behavior of our algorithm. In some data files we were able to highlight some of the glycemic patterns characteristics that remain invisible on the tabular representations or through the use of descriptive statistic. In a next step the interpretation will have to be done by physicians to confirm they underlie knowledge. Conclusions: Our approach with artificial intelligence algorithm paired up with graphical color display allow a large database fast analysis to provide insights on diabetes knowledge. The next steps are first to set up a clinical trial to validate this methodology with dedicated patients and physicians then we will adapt our methodology for the huge data sets generated by continuous glycemic measurement (CGM) devices.
    Type of Medium: Online Resource
    ISSN: 1932-2968 , 1932-2968
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2019
    detail.hit.zdb_id: 2467312-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages