Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    SAGE Publications ; 2020
    In:  Natural Product Communications Vol. 15, No. 6 ( 2020-06-01), p. 1934578X2093421-
    In: Natural Product Communications, SAGE Publications, Vol. 15, No. 6 ( 2020-06-01), p. 1934578X2093421-
    Kurzfassung: Coronavirus disease (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a highly infectious viral disease. Clinical observations have shown that Qing-Fei-Da-Yuan (QFDY) granules have good anti-COVID-19 effects, but the underlying molecular mechanisms are unclear. In this study, we explored the potential mechanism of QFDY with regard to its anti-COVID-19 effect. We first screened the active chemical constituents of QFDY based on the pharmacodynamic activity parameters, followed by screening with the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. The Uniprot database was used for querying the corresponding genes of the target, and Cyoscape 3.6.1 software was used to construct the network of herb-compound-target. Protein interaction analysis, target gene function enrichment analysis, and signal pathway analysis were performed via STRING database, Database for Annotation, Visualization, and Integrated Discovery, and KEGG Pathway database. Molecular docking was used to predict the binding capacity of the core compound with COVID-19 hydrolase 3CL and angiotensin converting enzyme 2 (ACE2). The results showed that a network of herb-compound-target was successfully constructed, with key targets involving PTGS2, HSP90AA1, CAMKK2, NCOA2, and ESR1. Major metabolic pathways affected were those in cancer, procancer, nonsmall cell lung cancer, and apoptosis. The core compounds, such as quercetin, luteolin, and naringenin, showed a strong binding ability with COVID-19 3CL hydrolase; compounds such as anemasaponin C and medicocarpin showed a strong binding ability with ACE2. Thus, it is predicted that QFDY has the characteristics for multicomponent, multitarget, and multichannel overall control. The mechanism of action of QFDY in the treatment of COVID-19 may be associated with the regulation of genes co-expressed with ACE2, the regulation of inflammation and immune-related signaling pathways, and the influence of COVID-19 3CL hydrolase and ACE2 binding ability.
    Materialart: Online-Ressource
    ISSN: 1934-578X , 1555-9475
    Sprache: Englisch
    Verlag: SAGE Publications
    Publikationsdatum: 2020
    ZDB Id: 2430442-6
    SSG: 15,3
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz