Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    SAGE Publications ; 2022
    In:  Journal of Applied Biomaterials & Functional Materials Vol. 20 ( 2022-01), p. 228080002210781-
    In: Journal of Applied Biomaterials & Functional Materials, SAGE Publications, Vol. 20 ( 2022-01), p. 228080002210781-
    Abstract: Magnesium has mechanical properties similar to those of bone and is being considered as a potential bone substitute. In the present study, two different pore sized scaffolds of the Mg alloy LAE442, coated with magnesium fluoride, were compared. The scaffolds had interconnecting pores of either 400 (p400) or 500 µm (p500). ß-TCP served as control. Ten scaffolds per time group (6, 12, 24, 36 weeks) were implanted in the trochanter major of rabbits. Histological analyses, µCT scans, and SEM/EDX were performed. The scaffolds showed slow volume decreases (week 36 p400: 9.9%; p500: 7.5%), which were accompanied by uncritical gas releases. In contrast, ß-TCP showed accelerated resorption (78.5%) and significantly more new bone inside (18.19 ± 1.47 mm 3 ). Bone fragments grew into p400 (0.17 ± 0.19 mm 3 ) and p500 (0.36 ± 0.26 mm 3 ), reaching the centrally located pores within p500 more frequently. In particular, p400 displayed a more uneven and progressively larger surface area (week 36 p400: 253.22 ± 19.44; p500: 219.19 ± 4.76 mm 2 ). A better osseointegration of p500 was indicated by significantly more trabecular contacts and a 200 µm wide bone matrix being in the process of mineralization and in permanent contact with the scaffold. The number of macrophages and foreign body giant cells were at an acceptable level concerning resorbable biomaterials. In terms of ingrown bone and integrative properties, LAE442 scaffolds could not achieve the results of ß-TCP. In this long-term study, p500 appears to be a biocompatible and more osteoconductive pore size for the Mg alloy LAE442.
    Type of Medium: Online Resource
    ISSN: 2280-8000 , 2280-8000
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2022
    detail.hit.zdb_id: 2673624-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages