Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Mineralogical Society ; 2020
    In:  Mineralogical Magazine Vol. 84, No. 1 ( 2020-02), p. 65-80
    In: Mineralogical Magazine, Mineralogical Society, Vol. 84, No. 1 ( 2020-02), p. 65-80
    Abstract: The Huanglongpu carbonatites are located in the north-western part of the Qinling orogenic belt in central China. Calcite carbonatite dykes at the Dashigou open pit are unusual due to their enrichment in heavy rare earth elements ( HREE ) relative to light rare earth elements ( LREE ), leading to a flat REE pattern, and in that the majority of dykes have a quartz core. They also host economic concentrations of molybdenite. The calcite carbonatite dykes show two styles of mineralogy according to the degree of hydrothermal reworking, and these are reflected in REE distribution and concentration. The REE in the little-altered calcite carbonatite occur mostly in magmatic REE minerals, mainly monazite-(Ce), and typically have Σ LREE /( HREE +Y) ratios from 9.9 to 17. In hydrothermally altered calcite carbonatites, magmatic monazite-(Ce) is partially replaced to fully replaced by HREE -enriched secondary phases and the rocks have Σ LREE /( HREE +Y) ratios from 1.1 to 3.8. The fluid responsible for hydrothermal REE redistribution is preserved in fluid inclusions in the quartz lenses. The bulk of the quartz lacks fluid inclusions but is cut by two later hydrothermal quartz generations, both containing sulfate-rich fluid inclusions with sulfate typically present as multiple trapped solids, as well as in solution. The estimated total sulfate content of fluid inclusions ranges from 6 to 〉 33 wt.% K 2 SO 4 equivalent. We interpret these heterogeneous fluid inclusions to be the result of reaction of sulfate-rich fluids with the calcite carbonatite dykes. The final HREE enrichment is due to a combination of factors: (1) the progressive HREE enrichment of later magmatic calcite created a HREE -enriched source; (2) REE –SO 4 2– complexing allowed the REE to be redistributed without fractionation; and (3) secondary REE mineralisation was dominated by minerals such as HREE -enriched fluorocarbonates, xenotime-(Y) and churchite-(Y) whose crystal structures tends to favour HREE .
    Type of Medium: Online Resource
    ISSN: 0026-461X , 1471-8022
    RVK:
    Language: English
    Publisher: Mineralogical Society
    Publication Date: 2020
    detail.hit.zdb_id: 2034522-7
    SSG: 13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages