In:
Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 3124-3124
Kurzfassung:
The leukemic cells in patients with chronic lymphocytic leukemia (CLL) are highly dependent on B-cell receptor (BCR) mediated signaling. Despite this and the fact that 〉 90% of CLL clones co-express IgM and IgD, the composition and molecular mechanisms regulating BCR signaling regarding the two isotypes and the co-receptors with which they associate is lacking. Here we have addressed these issues. First, using Imaging Flow Cytometry, we evaluated BCR organization on the surface membrane of CLL cells from 11 patients who had participated in a 2H2O-labeling study that determined in vivoCLL B-cell birth rates (BR). We found that in all cases mIgM resided in more and larger surface clusters than mIgD. Also, a statistically significant, direct correlation was observed for IgM density and in vivoCLL-cell BR, with patients exhibiting more recently-divided cells having the highest expression of IgM. This was not the case for IgD. BCR signaling requires co-receptors that can co-localize differently with the two isotypes. Thus, we tested co-localization of stimulatory (CD20) and inhibitory (CD22) co-receptors with mIgM and mIgD, using the proximity ligation assay technique that discriminates 10 to 40 nm distances. Higher IgM:CD20 and lower IgD:CD20 co-localization ratios directly associated with in vivo BR. Conversely, patients whose CLL B cells showed greater IgM to CD22 co-localization ratios had lower BRs. Thus, association of IgM with stimulatory versus inhibitory co-receptors correlated with positive or negative regulation of CLL growth in vivo. Next, we questioned the extent that the observed differences in BCR organization affected the entire clone by measuring a marker of single cell metabolic activity - cell size. IgM and BR associated with entire clonal populations that were skewed toward larger, more active cells. Similarly, high BR CLLs displayed an increased mitochondrial maximal respiration and glycolytic activity and capacity, based on measurements of oxygen consumption rate and extracellular acidification rate, respectively. Since our findings supported a link between IgM- but not IgD-BCRs, growth rate in vivoand clonal metabolic activity, we questioned whether intrinsic, constitutive CLL BCR autonomous signaling differed for these two isotypes. To address this, we examined the signaling capacities of CLL-derived BCRs expressed as IgM or IgD isotypes, while maintaining the original IGHV-D-J and IGLV-J rearrangements. We used B cells that do not express endogenous BCR-related molecules but do express an inducible ERT2- SLP-65 fusion protein which enables examining Ca++influx. All BCRs expressed as IgM effectively mobilized Ca++ without need for an external ligand, indicating autonomous signaling. In contrast, BCRs expressed as IgD did not signal autonomously but required crosslinking with anti-BCR. Thus, only mIgM BCRs naturally transduce a signal in the absence of antigen. To determine the extent that BCR signaling influences clonal activity and in vivoBR, we compared cell size of CLL B cells taken from patients before and after 4 weeks of treatment with the Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib (iBTK). Ibrutinib had a strong treatment effect on cell activity, reducing overall cell size in 10/11 patients. A comparison of single cell areas for patients with lower (BR = 0.54%) and higher (BR = 1.42%) BRs showed an overall reduction of the median cell size for both cases. Thus, iBTK treatment leads to an equilibration of the cell size profile among the cases differing in BR, indicating that ibrutinib acts proportionally more potently on more metabolically active CLL B cells. Likewise, these findings are consistent with BCR signaling, transduced through BTK, being responsible for the increased cellular activity of aggressive CLL clones. In conclusion, increased mIgM density and proximity of mIgM to stimulatory receptors is linked to greater metabolic activity clones and increased rate of proliferationin vivo. Conversely, proximity of mIgM to inhibitory receptors has the opposite correlations.Moreover, only mIgM carries out autonomous signaling, providing another biologic trait linking all these features. Thus, our data support a tight, isotype-dependent regulation of BCR signaling and its consequences for CLL B cells. Further understanding these mechanisms should help generate novel therapies to modify the quality of BCR-transduced signaling and thus cell fate. Disclosures Barrientos: Gilead: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmacyclics/AbbVie: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees. Rai:Cellectis: Membership on an entity's Board of Directors or advisory committees; Roche/Genentech: Membership on an entity's Board of Directors or advisory committees; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees. Chiorazzi:AR Pharma: Equity Ownership; Janssen, Inc: Consultancy.
Materialart:
Online-Ressource
ISSN:
0006-4971
,
1528-0020
DOI:
10.1182/blood-2018-99-119989
Sprache:
Englisch
Verlag:
American Society of Hematology
Publikationsdatum:
2018
ZDB Id:
1468538-3
ZDB Id:
80069-7