In:
Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 285-285
Kurzfassung:
The nucleus is spatially organized by chromosome and interchromatin functional components. Global reorganization of chromatin interactions and compartmentalization occurring during differentiation requires proper chromosome positioning, but the involvement of nuclear components in this process remains largely underexplored. In particular, blood cell development exemplifies a coordinated process accompanied by dramatic chromatin reorganization, thereby providing a model in which to interrogate chromatin dynamics during differentiation. Here, we show that an abundant inner nuclear protein Matrin-3 (Matr3) plays a critical role in the maintenance of chromatin structure and has a broad effect on erythroid cell differentiation by coordinating gene expression. First, we deleted the entire gene body by CRISPR/Cas9 in mouse erythroleukemia (MEL) cells. The Matr3 knockout (KO) cells proliferate normally and exhibit morphological changes on differentiation suggestive of accelerated maturation. Consistently, erythroid-specific genes were expressed at a higher level in MEL Matr3 KO cells than in parental cells. The consequences of Matr3 deletion were also determined in G1ER cells, in which differentiation is conditional on activation of GATA-1. To assess the global impact of Matr3 loss on erythroid cell maturation, we measured global RNA expression changes. Erythroid-specific genes were expressed at a much higher level upon differentiation of Matr3 KO cells. Differentiation is typically accompanied by specific changes in nuclear architecture. Using super-resolution microscopy, we observed that heterochromatin protein 1α (HP1α) was more dispersed and irregular in appearance in Matr3 KO cells, suggesting that Matr3 loss alters morphological boundaries of heterochromatin. Analysis of the interactions between different regions of chromatin identifies topologically associating domains and classifies the genome into two compartments (A and B). The A and B compartments correspond to the structures and characteristics of known euchromatin and heterochromatin, respectively. We next explored global chromatin structure using a high-throughput chromosome conformation capture (Hi-C) assay. In Matr3 KO cells, insulation at the domain boundaries was reduced, and the compartment strengths between the B compartments became stronger, while those between A-type domains were reduced. Remarkably, we found that these changes in cells lacking Matr3 were similar to changes in chromatin contact during differentiation. To access the genomic features at a higher resolution, we performed the assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq). Notably, the newly opened regions in Matr3 KO, as compared to parental, cells were enriched for GATA motifs, which are generally more accessible in differentiated erythroid cells. Architectural proteins function cooperatively to organize chromatin. Using affinity purification followed by mass spectrometry and immunoblotting, we found that Matr3 interacts with proteins involved in chromatin remodeling, such as CTCF and cohesin. To identify whether Matr3 loss alters chromatin occupancy of its interacting partners, we performed ChIP-seq for CTCF and the core cohesin component Rad21. In the absence of Matr3, occupancy of CTCF and Rad21 was perturbed in a subset of genomic regions. Moreover, destabilization of CTCF and cohesin binding correlated with altered transcription and accelerated erythroid differentiation. Most sites with disrupted CTCF and Rad21 binding during differentiation were also sensitive to the absence of the scaffold protein Matr3. Our data demonstrate that the nucleoplasmic protein Matr3 stabilizes the binding of the architectural proteins (CTCF and cohesin) to chromatin and serves to maintain chromatin structure. We speculate that Matr3 negatively regulates cell fate transitions by maintaining cellular state through fine-tuning the binding of CTCF/cohesin to chromatin and associated 3D interactions. Our work reveals a previously unrecognized role of Matr3 in chromatin organization and responses to developmental cues. Disclosures No relevant conflicts of interest to declare.
Materialart:
Online-Ressource
ISSN:
0006-4971
,
1528-0020
DOI:
10.1182/blood-2021-151070
Sprache:
Englisch
Verlag:
American Society of Hematology
Publikationsdatum:
2021
ZDB Id:
1468538-3
ZDB Id:
80069-7