Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 1534-1534
    Abstract: Deregulated microRNA (miRNA) expression has been implicated in the pathogenesis of acute myeloid leukemia (AML). We previously showed that miR-193b is a STAT5-regulated miRNA that controls hematopoietic stem and progenitor cell (HSPC) expansion by modulating cytokine receptor signaling. Here we demonstrate that the miR-193 family members miR-193a and 193b are potent tumor suppressors in AML. Both miRNAs were downregulated in several cytogenetically-defined subgroups of pediatric and adult AML (n=202), whereas low miR-193b expression was an independent indicator for poor prognosis and survival. Accordingly, ectopic retroviral Hoxa9-Meis1 expression in HSPCs from miR-193b-/- mice resulted in a more aggressive disease with significantly shortened latency and survival as compared to miR-193bWT/WT HSPCs. Inversely, ectopic miR-193 expression in leukemic cells belonging to various AML subgroups decreased leukemic growth in vitro and prolonged survival of mice suffering from Hoxa9-Meis1-induced leukemia through a G1/S phase block. These effects were mediated by targeting c-KIT, KRAS and SOS2 - key factors of the KIT-RAS-RAF-MEK-ERK signaling cascade - as well as the downstream cell cycle regulator CCND1. Knockdown of each of these genes partially recapitulated the anti-proliferative effect of ectopic lentiviral miR-193 expression. As the tumor suppressive function is independent of patient age or AML cytogenetic background, these observations suggest an opportunistic role for miR-193 in future AML therapies. With the notion that a single miRNA can control aberrant MAPK signaling at multiple levels, restoring miR-193 expression in AML cells with constitutive activation of this cascade would assure high antileukemic efficacy, while avoiding the fast development of resistance mechanisms. Disclosures Heuser: Bayer Pharma AG: Research Funding; Novartis: Consultancy, Research Funding; BerGenBio: Research Funding; Tetralogic: Research Funding; Karyopharm Therapeutics Inc: Research Funding; Celgene: Honoraria; Pfizer: Research Funding. Mulaw:NuGEN: Honoraria. Baruchel:Jazz: Consultancy; Servier: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Baxalta: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages