Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2008
    In:  BMC Microbiology Vol. 8, No. 1 ( 2008-12)
    In: BMC Microbiology, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2008-12)
    Abstract: In 1994, an outbreak of Enterobacter sakazakii infections in France occurred in a neonatal intensive care unit during which 17 neonates were infected. More than half of the infected neonates had severe clinical symptoms; 7 cases of necrotising enterocolitis (one with abdominal perforation), one case of septicemia, and one case of meningitis. The other 8 neonates were shown to be colonized but remained asymptomatic. There were three deaths. Four distinguishable pulsotypes of E. sakazakii were isolated during the outbreak, and the deaths were attributable to one pulsotype. This paper compares strains, from the four pulsotypes, for attachment and invasion of mammalian intestinal cells, macrophage survival and blood-brain barrier invasion. A fourth death from septic shock also occurred during the E. sakazakii outbreak. This was due to E. cloacae which at the time of the outbreak had been misidentified as E. sakazakii . This isolate has been included in this study. Results All E. sakazakii strains attached and invaded Caco-2 human epithelial cells, and invaded rat brain capillary endothelial cells. The majority of strains persisted in macrophage cells for 48 h. Two strains from fatal NEC and meningitis cases showed the highest invasion rate of Caco-2 intestinal cells. Their invasion of brain capillary endothelial cells was equivalent or greater than that of the neonatal E. coli meningitis strain K1. These strains also had extended spectrum β-lactamase activities. E. cloacae differed from E. sakazakii due to the greater attachment and less invasion of epithelial cells, no survival in macrophages, and less invasion of capillary endothelial brain cells. Conclusion While variables such as host factors and treatment strategies determine the outcome of infection, our in vitro studies evaluated the virulence of the isolates associated with this outbreak. It was not possible to directly correlate clinical symptoms and outcomes with in vitro studies. Nevertheless, we have shown the variation in invasive potential of E. sakazakii with intestinal and blood-brain barrier cells between and within pulsotypes from a neonatal intensive care unit outbreak. E. sakazakii strains were able to persist and even replicate for a period within macrophage cells. These traits appear to facilitate host immune evasion and dissemination.
    Type of Medium: Online Resource
    ISSN: 1471-2180
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2008
    detail.hit.zdb_id: 2041505-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages