In:
BMC Biotechnology, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2007-12)
Abstract:
The ability to acquire fully human monoclonal antibodies (mAbs) with pre-defined specificities is critical to the development of molecular tags for the analysis of receptor function in addition to promising immunotherapeutics. Yet most of the arriving affinity maturated and complete human immunoglobulin G (IgG) molecules, which are actually derived from single human B cells, have not widely been used to study the conserved self antigens (Ags) such as CD152 (cytotoxic T lymphocyte antigen-4, CTLA-4) because proper hosts are lacking. Results Here we developed an optimized protocol for site-directed in vitro immunizing peripheral blood mononuclear cells (PBMC) by using a selected epitope of human CD152, an essential receptor involved in down-regulation of T cell activation. The resultant stable trioma cell lines constantly produce anti-CD152 mAb (γ4λhuCD152), which contains variable (V) regions of the heavy chain and the light chain derived from the VH3 and Vλ human germline genes, respectively, and yet displays an unusual IgG4 isotype. Interestingly, γ4λhuCD152 has a basic pI not commonly found in myeloid monoclonal IgG4λs as revealed by the isoelectric focusing (IEF) analysis. Furthermore, γ4λhuCD152 binds specifically, with nanomolar affinity, to an extracellular constituency encompassing the putative second complementarity determining region (CDR2) of CD152, whereby it can react to activated CD3 + cells. Conclusion In a context of specific cell depletion and conditioned medium, in vitro induction of human Abs against a conserved self Ag was successfully acquired and a relatively basic mAb, γ4λhuCD152, with high affinity to CDR2 of CD152 was thus obtained. Application of such a human IgG4λ mAb with designated CDR2 specificity may impact upon and prefer for CD152 labeling both in situ and ex situ , as it does not affect the binding of endogenous B7 ligands and can localize into the confined immunological synapse which may otherwise prevent the access of whole IgG1 molecules.
Type of Medium:
Online Resource
ISSN:
1472-6750
DOI:
10.1186/1472-6750-7-51
Language:
English
Publisher:
Springer Science and Business Media LLC
Publication Date:
2007
detail.hit.zdb_id:
2052746-9
SSG:
12