Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2012
    In:  BMC Medical Informatics and Decision Making Vol. 12, No. 1 ( 2012-12)
    In: BMC Medical Informatics and Decision Making, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2012-12)
    Kurzfassung: Death records are a rich source of data, which can be used to assist with public surveillance and/or decision support. However, to use this type of data for such purposes it has to be transformed into a coded format to make it computable. Because the cause of death in the certificates is reported as free text, encoding the data is currently the single largest barrier of using death certificates for surveillance. Therefore, the purpose of this study was to demonstrate the feasibility of using a pipeline, composed of a detection rule and a natural language processor, for the real time encoding of death certificates using the identification of pneumonia and influenza cases as an example and demonstrating that its accuracy is comparable to existing methods. Results A Death Certificates Pipeline (DCP) was developed to automatically code death certificates and identify pneumonia and influenza cases. The pipeline used MetaMap to code death certificates from the Utah Department of Health for the year 2008. The output of MetaMap was then accessed by detection rules which flagged pneumonia and influenza cases based on the Centers of Disease and Control and Prevention (CDC) case definition. The output from the DCP was compared with the current method used by the CDC and with a keyword search. Recall, precision, positive predictive value and F-measure with respect to the CDC method were calculated for the two other methods considered here. The two different techniques compared here with the CDC method showed the following recall/ precision results: DCP: 0.998/0.98 and keyword searching: 0.96/0.96. The F-measure were 0.99 and 0.96 respectively (DCP and keyword searching). Both the keyword and the DCP can run in interactive form with modest computer resources, but DCP showed superior performance. Conclusion The pipeline proposed here for coding death certificates and the detection of cases is feasible and can be extended to other conditions. This method provides an alternative that allows for coding free-text death certificates in real time that may increase its utilization not only in the public health domain but also for biomedical researchers and developers. Trial Registration This study did not involved any clinical trials.
    Materialart: Online-Ressource
    ISSN: 1472-6947
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2012
    ZDB Id: 2046490-3
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz