Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: BMC Genomics, Springer Science and Business Media LLC, Vol. 22, No. 1 ( 2021-12)
    Abstract: Virescent mutation broadly exists in plants and is an ideal experimental material to investigate regulatory mechanisms underlying chlorophyll synthesis, photosynthesis and plant growth. Up to date, the molecular mechanisms in two virescent mutations have been clarified in cottons ( Gossypiuma hirsutum ). A virescent mutation has been found in the cotton strain Sumian 22, and the underlying molecular mechanisms have been studied. Methods The virescent mutant and wild type (WT) of Sumian 22 were cross-bred, and the F 1 population were self-pollinated to calculate the segregation ratio. Green and yellow leaves from F 2 populations were subjected to genome sequencing and bulked-segregant analysis was performed to screen mutations. Real-time quantitative PCR (RT-qPCR) were performed to identify genes in relations to chlorophyll synthesis. Intermediate products for chlorophyll synthesis were determined to validate the RT-qPCR results. Results The segregation ratio of green and virescent plants in F2 population complied with 3:1. Compared with WT, a 0.34 Mb highly mutated interval was identified on the chromosome D10 in mutant, which contained 31 genes. Among them, only ABCI1 displayed significantly lower levels in mutant than in WT. Meanwhile, the contents of Mg-protoporphyrin IX, protochlorophyllide, chlorophyll a and b were all significantly lower in mutant than in WT, which were consistent with the inhibited levels of ABCI1 . In addition, a mutation from A to T at the -317 bp position from the start codon of ABCI1 was observed in the genome sequence of mutant. Conclusions Inhibited transcription of ABCI1 might be the mechanism causing virescent mutation in Sumian 22 cotton, which reduced the transportation of protoporphyrin IX to plastid, and then inhibited Mg-protoporphyrin IX, Protochlorophyllide and finally chlorophyll synthesis. These results provided novel insights into the molecular mechanisms underlying virescent mutation in cotton.
    Type of Medium: Online Resource
    ISSN: 1471-2164
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2041499-7
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages