Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Cell International, Springer Science and Business Media LLC, Vol. 23, No. 1 ( 2023-09-02)
    Abstract: Docetaxel (DTX) resistance reduces therapeutic efficacy in prostate cancer (PCa). Accumulating reports support the role of phytochemicals in the reversal of DTX resistance. This study aimed to determine whether Epimedium brevicornu and Curcuma zedoaria extracts (ECe), specially icariin-curcumol, attenuates DTX resistance and explore their potential mechanisms. Methods Regulatory pathways were predicted between ECe active ingredients and PCa using network pharmacology. DTX-resistant cell LNCaP/R were established based on DTX-sensitive LNCaP, and xenograft models were further established. Active ingredients in ECe by HLPC-MS were identified. The binding of icariin and curcumol to the target was analyzed by molecular docking. Biochemical experiments were applied to determine the possible mechanisms by which Icariin-Curcumol regulates DTX sensitivity. Results Akt1 and the PI3K-Akt signaling pathway were predicted as the primary functional target between drug and PCa. ECe and DTX inhibited xenograft tumor growth, inflammation, cell viability and promoted apoptosis. Icariin and curcumol were detected in ECe, and icariin and curcumol docked with Akt1. ECe, Icariin-Curcumol and DTX downregulated AR, PSA, PI3K, Akt1, mTOR, and HIF-1ɑ. Moreover, ECe, Icariin-Curcumol and DTX increased glucose and PDH, decreased lactic acid, ATP and LDH, and downregulated c-Myc, hnRNPs, VEGF, PFK1, and PKM2. Notably, the anti-PCa effect of DTX was attenuated compared to ECe or Icariin-Curcumol in the LNCaP/R model. The combined effect of Icariin-Curcumol and DTX was superior to that of DTX. Conclusion Our data support that Icariin-Curcumol reverses DTX resistance by inhibiting the PI3K-Akt signaling and the Warburg effect, providing new ideas for improving therapeutic measures for PCa.
    Type of Medium: Online Resource
    ISSN: 1475-2867
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2091573-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages