Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Malaria Journal, Springer Science and Business Media LLC, Vol. 20, No. 1 ( 2021-12)
    Abstract: Implementation and upscale of effective malaria vector control strategies necessitates understanding the multi-factorial aspects of transmission patterns. The primary aims of this study are to determine the vector composition, biting rates, trophic preference, and the overall importance of distinguishing outdoor versus indoor malaria transmission through a study at two communities in rural Mali. Methods Mosquito collection was carried out between July 2012 and June 2016 at two rural Mali communities (Dangassa and Koïla Bamanan) using pyrethrum spray-catch and human landing catch approaches at both indoor and outdoor locations. Species of Anopheles gambiae complex were identified by polymerase chain reaction (PCR). Enzyme-Linked -Immuno-Sorbent Assay (ELISA) were used to determine the origin of mosquito blood meals and presence of Plasmodium falciparum sporozoite infections. Results A total of 11,237 An. gambiae sensu lato ( s.l .) were collected during the study period (5239 and 5998 from the Dangassa and Koïla Bamanan sites, respectively). Of the 679 identified by PCR in Dangassa, Anopheles coluzzii was the predominant species with 91.4% of the catch followed by An. gambiae (8.0%) and Anopheles arabiensis (0.6%). At the same time in Koïla Bamanan, of the 623 An. gambiae s.l. , An. coluzzii accounted for 99% of the catch, An. arabiensis 0.8% and An. gambiae 0.2%. Human Blood Index (HBI) measures were significantly higher in Dangassa (79.4%; 95% Bayesian credible interval (BCI) [77.4, 81.4]) than in Koïla Bamanan (15.9%; 95% BCI [14.7, 17.1] ). The human biting rates were higher during the second half of the night at both sites. In Dangassa, the sporozoite rate was comparable between outdoor and indoor mosquito collections. For outdoor collections, the sporozoite positive rate was 3.6% (95% BCI [2.1–4.3]) and indoor collections were 3.1% (95% BCI [2.4–5.0] ). In Koïla Bamanan, the sporozoite rate was higher indoors at 4.3% (95% BCI [2.7–6.3]) compared with outdoors at 2.4% (95% BCI [1.1–4.2] ). In Dangassa, corrected entomological inoculation rates (cEIRs) using HBI were 13.74 [95% BCI 9.21–19.14] infective bites/person/month (ib/p/m) at indoor, and 18.66 [95% BCI 12.55–25.81] ib/p/m at outdoor. For Koïla Bamanan, cEIRs were 1.57 [95% BCI 2.34–2.72] ib/p/m and 0.94 [95% BCI 0.43–1.64] ib/p/m for indoor and outdoor, respectively. EIRs were significantly higher at the Dangassa site than the Koïla Bamanan site. Conclusion The findings in this work may indicate the occurrence of active, outdoor residual malaria transmission is comparable to indoor transmission in some geographic settings. The high outdoor transmission patterns observed here highlight the need for additional strategies to combat outdoor malaria transmission to complement traditional indoor preventive approaches such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) which typically focus on resting mosquitoes.
    Type of Medium: Online Resource
    ISSN: 1475-2875
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2091229-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages