Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Neuroinflammation, Springer Science and Business Media LLC, Vol. 18, No. 1 ( 2021-12)
    Abstract: Perinatal inflammation is a key factor of brain vulnerability in neonates born preterm or with intra-uterine growth restriction (IUGR), two leading conditions associated with brain injury and responsible for neurocognitive and behavioral disorders. Systemic inflammation is recognized to activate microglia, known to be the critical modulators of brain vulnerability. Although some evidence supports a role for metabotropic glutamate receptor 3 (mGlu3 receptor) in modulation of neuroinflammation, its functions are still unknown in the developing microglia. Methods We used a double-hit rat model of perinatal brain injury induced by a gestational low-protein diet combined with interleukin-1β injections (LPD/IL-1β), mimicking both IUGR and prematurity-related inflammation. The effect of LPD/IL-1β on mGlu3 receptor expression and the effect of mGlu3 receptor modulation on microglial reactivity were investigated using a combination of pharmacological, histological, and molecular and genetic approaches. Results Exposure to LPD/IL-1β significantly downregulated Grm3 gene expression in the developing microglia. Both transcriptomic analyses and pharmacological modulation of mGlu3 receptor demonstrated its central role in the control of inflammation in resting and activated microglia. Microglia reactivity to inflammatory challenge induced by LPD/IL-1β exposure was reduced by an mGlu3 receptor agonist. Conversely, both specific pharmacological blockade, siRNA knock-down, and genetic knock-out of mGlu3 receptors mimicked the pro-inflammatory phenotype observed in microglial cells exposed to LPD/IL-1β. Conclusions Overall, these data show that Grm3 plays a central role in the regulation of microglial reactivity in the immature brain. Selective pharmacological activation of mGlu3 receptors may prevent inflammatory-induced perinatal brain injury.
    Type of Medium: Online Resource
    ISSN: 1742-2094
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2156455-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages