In:
Critical Care, Springer Science and Business Media LLC, Vol. 19, No. 1 ( 2015-12)
Abstract:
Severe trauma triggers a systemic inflammatory response that contributes to secondary complications, such as nosocomial infections, sepsis or multi-organ failure. The present study was aimed to identify markers predicting complications and an adverse outcome of severely injured patients by an integrated clinico-transcriptomic approach. Methods In a prospective study, RNA samples from circulating leukocytes from severely injured patients (injury severity score ≥ 17 points; n = 104) admitted to a Level I Trauma Center were analyzed for dynamic changes in gene expression over a period of 21 days by quantitative RT-PCR. Transcriptomic candidates were selected based on whole genome screening of a representative discovery set (n = 10 patients) or known mechanisms of the immune response, including mediators of inflammation (IL-8, IL-10, TNF-α, MIF, C5, CD59, SPHK1), danger signaling (HMGB1, TLR2, CD14, IL-33, IL-1RL1), and components of the heme degradation pathway (HP, CD163, HMOX1, BLVRA, BLVRB). Clinical markers comprised standard physiological and laboratory parameters and scoring systems routinely determined in trauma patients. Results Leukocytes, thrombocytes and the expression of sphingosine kinase-1 (SPHK1), complement C5, and haptoglobin (HP) have been identified as markers with the best performance. Leukocytes showed a biphasic course with peaks on day 0 and day 11 after trauma, and patients with sepsis exhibited significantly higher leukocyte levels. Thrombocyte numbers showed a typical profile with initial thrombopenia and robust thrombocytosis in week 3 after trauma, ranging 2- to 3-fold above the upper normal value. ‘Relative thrombocytopenia’ was associated with multi-organ dysfunction, the development of sepsis, and mortality, the latter of which could be predicted within 3 days prior to the time point of death. SPHK1 expression at the day of admission indicated mortality with excellent performance. C5-expression on day 1 after trauma correlated with an increased risk for the development of nosocomial infections during the later course, while HP was found to be a marker for the development of sepsis. Conclusions The combination of clinical and transcriptomic markers improves the prognostic performance and may represent a useful tool for individual risk stratification in trauma patients.
Type of Medium:
Online Resource
ISSN:
1364-8535
DOI:
10.1186/s13054-015-1127-y
Language:
English
Publisher:
Springer Science and Business Media LLC
Publication Date:
2015
detail.hit.zdb_id:
2051256-9