Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2019
    In:  Genome Biology Vol. 20, No. 1 ( 2019-12)
    In: Genome Biology, Springer Science and Business Media LLC, Vol. 20, No. 1 ( 2019-12)
    Kurzfassung: Human tissue is increasingly being whole genome sequenced as we transition into an era of genomic medicine. With this arises the potential to detect sequences originating from microorganisms, including pathogens amid the plethora of human sequencing reads. In cancer research, the tumorigenic ability of pathogens is being recognized, for example, Helicobacter pylori and human papillomavirus in the cases of gastric non-cardia and cervical carcinomas, respectively. As of yet, no benchmark has been carried out on the performance of computational approaches for bacterial and viral detection within host-dominated sequence data. Results We present the results of benchmarking over 70 distinct combinations of tools and parameters on 100 simulated cancer datasets spiked with realistic proportions of bacteria. mOTUs2 and Kraken are the highest performing individual tools achieving median genus-level F1 scores of 0.90 and 0.91, respectively. mOTUs2 demonstrates a high performance in estimating bacterial proportions. Employing Kraken on unassembled sequencing reads produces a good but variable performance depending on post-classification filtering parameters. These approaches are investigated on a selection of cervical and gastric cancer whole genome sequences where Alphapapillomavirus and Helicobacter are detected in addition to a variety of other interesting genera. Conclusions We provide the top-performing pipelines from this benchmark in a unifying tool called SEPATH, which is amenable to high throughput sequencing studies across a range of high-performance computing clusters. SEPATH provides a benchmarked and convenient approach to detect pathogens in tissue sequence data helping to determine the relationship between metagenomics and disease.
    Materialart: Online-Ressource
    ISSN: 1474-760X
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2019
    ZDB Id: 2040529-7
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz