Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Biotechnology for Biofuels Vol. 14, No. 1 ( 2021-04-19)
    In: Biotechnology for Biofuels, Springer Science and Business Media LLC, Vol. 14, No. 1 ( 2021-04-19)
    Abstract: Miscanthus is a commercial lignocellulosic biomass crop owing to its high biomass productivity and low chemical input requirements. Within an interspecific Miscanthus cross, progeny with high biomass yield were shown to have low concentrations of starch and sucrose but high concentrations of fructose. We performed a transcriptional RNA-seq analysis between selected Miscanthus hybrids with contrasting values for these phenotypes to clarify how these phenotypes are genetically controlled. Results We observed that genes directly involved in the synthesis and degradation of starch and sucrose were down-regulated in high-yielding Miscanthus hybrids. At the same time, glycolysis and export of triose phosphates were up-regulated in high-yielding Miscanthus hybrids. These differentially expressed genes and biological functions were regulated by a well-connected network of less than 25 co-regulated transcription factors. Conclusions Our results evidence a direct relationship between high expression of essential enzymatic genes in the starch and sucrose pathways and co-expression with their transcriptional regulators, with high starch concentrations and lower biomass production. The strong interconnectivity between gene expression and regulators, chemotype and agronomic traits opens the door to use the expression of well-characterised genes associated with carbohydrate metabolism, particularly in the starch and sucrose pathway, for the early selection of high biomass-yielding genotypes from large Miscanthus populations.
    Type of Medium: Online Resource
    ISSN: 1754-6834
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 3107320-7
    detail.hit.zdb_id: 2421351-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages