Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Stem Cell Research & Therapy, Springer Science and Business Media LLC, Vol. 6, No. 1 ( 2015-12)
    Abstract: Despite the success of interventional processes such as drug-eluting stents, complete prevention of restenosis is still hindered by impaired or delayed endothelialization or both. Here, we report that 1 H -pyrrole-2,5-dione-based small molecule-generated mesenchymal stem cell-derived functional endothelial cells (MDFECs) facilitated rapid transmural coverage of injured blood vessels. Methods Small molecules that induced CD31 expression were screened by principal component analysis (PCA). Rat mesenchymal stem cells (MSCs) were treated with selected small molecules for up to 16 days, and the expression levels of CD90 and CD31 were examined by immunocytochemistry. In vitro functional assays of MDFECs, including tube formation assays and nitric oxide production assays, were performed. After MDFECs (intravenous, 3×10 6 cells per animal) were injected into balloon-injured rats, neointima formation was monitored for up to 21 days. The endothelial coverage of denuded blood vessels was evaluated by Evans Blue staining. The functionality of repaired blood vessels was evaluated by measuring vasorelaxation and hemodynamic changes. Additionally, derivatives of the selected small molecules were examined for their ability to induce endothelial markers. Results PCA indicated that 3-(2,4-dichlorophenyl)-4-(1-methyl-1 H -indol-3-yl)-1 H -pyrrole-2,5-dione effectively induced MDFECs. MDFECs inhibited the neointima formation of denuded blood vessels by facilitating more rapid endothelialization. Further examination indicated that derivatives with a 1H-pyrrole-2,5-dione moiety are important for initiating the endothelial cell differentiation of MSCs. Conclusions Small molecules with 1 H -pyrrole-2,5-dione as a core structure have great potential to improve the efficacy of MSC-based cell therapy for vascular diseases, such as atherosclerosis and restenosis.
    Type of Medium: Online Resource
    ISSN: 1757-6512
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 2548671-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages