Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Stem Cell Research & Therapy, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2016-12)
    Abstract: The use of large amounts of human multipotent mesenchymal stroma/stem cells (MSC) for cell therapies represents a desirable property in tissue engineering and banking in the field of regenerative medicine. Methods and results Whereas cryo-storage of umbilical cord (UC) tissue pieces in liquid nitrogen without ingredients was associated with predominant appearance of apoptotic cells after thawing and re-culture, progressive growth of MSC was observed following use of cryo-medium. Moreover, conditioning of UC tissue pieces by initial explant culture and subsequent cryo-storage with cryo-medium accelerated a further MSC culture after thawing. These findings suggested that conditioning of UC tissue pieces provides an in vitro stem cell niche by maintenance of a 3-dimensional natural microenvironment for continuous MSC outgrowth and expansion. Indeed, culture of GFP-labeled UC tissue pieces was accompanied by increased outgrowth of GFP-labeled cells which was accelerated in conditioned UC tissue after cryo-storage. Moreover, cryopreserved conditioned UC tissue pieces in cryo-medium after thawing and explant culture could be cryopreserved again demonstrating renewed MSC outgrowth after repeated thawing with similar population doublings compared to the initial explant culture. Flow cytometry analysis of outgrowing cells revealed expression of the typical MSC markers CD73, CD90, and CD105. Furthermore, these cells demonstrated little if any senescence and cultures revealed stem cell-like characteristics by differentiation along the adipogenic, chondrogenic and osteogenic lineages. Conclusions Expression of MSC markers was maintained for at least 10 freeze/thaw/explant culture cycles demonstrating that repeated cryopreservation of conditioned UC tissue pieces provided a reproducible and enriched stem cell source.
    Type of Medium: Online Resource
    ISSN: 1757-6512
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2548671-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages