Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Society of Exploration Geophysicists ; 2015
    In:  GEOPHYSICS Vol. 80, No. 1 ( 2015-01-01), p. D51-D63
    In: GEOPHYSICS, Society of Exploration Geophysicists, Vol. 80, No. 1 ( 2015-01-01), p. D51-D63
    Abstract: The relationship between P-wave velocity and porosity in carbonate rocks shows a high degree of variability due to the complexity of the pore structure. This variability introduces high uncertainties to seismic inversion, amplitude variation with offset analysis, porosity estimation, and pore-pressure prediction based on velocity data. Elastic wave propagation in porous media is numerically modeled on the pore scale to investigate the effects of pore structure on P-wave velocities in carbonate rocks. We built 2D models of porous media using pore structure information and the similarity principle. Then, we simulated normal incidence wave propagation using finite element analysis. Finally, the velocity was determined from received modeled signals by means of crosscorrelation. The repeatability and accuracy of this modeling process was verified carefully. Based on the modeling results, a simple formulation of Sun’s frame flexibility factor ([Formula: see text] ), aspect ratio (AR, the ratio of the major axis to the minor axis), and pore density was developed. The numerical simulation results indicated that the P-wave velocity increases as a power function as the AR increases. Pores with small AR ([Formula: see text]) or large [Formula: see text] created softening effects that decrease P-wave velocity significantly. The P-wave velocity of carbonate rocks was dispersive; it depends on the ratio of the wavelength to pore size ([Formula: see text]). Such scale-dependent dispersion was more evident for carbonate rocks with higher porosity, lower AR, and/or lower P-wave impedance of pore fluids. The P-wave velocity of carbonate rocks with complicated pore geometries (low AR, high [Formula: see text] , small [Formula: see text]) was much lower than that of rocks with simple pore geometries (high AR, small [Formula: see text] , large [Formula: see text]) at low and high [Formula: see text] . The pore-scale modeling of elastic wave properties of porous rocks may explain the poor velocity-porosity correlation in carbonate rocks.
    Type of Medium: Online Resource
    ISSN: 0016-8033 , 1942-2156
    RVK:
    Language: English
    Publisher: Society of Exploration Geophysicists
    Publication Date: 2015
    detail.hit.zdb_id: 2033021-2
    detail.hit.zdb_id: 2184-2
    SSG: 16,13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages