Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Society of Exploration Geophysicists ; 2023
    In:  GEOPHYSICS Vol. 88, No. 3 ( 2023-05-01), p. IM41-IM49
    In: GEOPHYSICS, Society of Exploration Geophysicists, Vol. 88, No. 3 ( 2023-05-01), p. IM41-IM49
    Kurzfassung: The mapping of seismic facies from seismic data is considered a multiclass image semantic segmentation problem. Despite the signification progress made by the deep learning methods in seismic prospecting, the dense prediction problem of seismic facies requires large amounts of annotated seismic facies data, which often are unavailable. These valuable labels are only helpful in one model and field due to geologic heterogeneity. To overcome these challenges, we have developed a few-shot seismic facies segmentation model. Few-shot learning has been designed to learn to perform with very few labels and we design reconstructing masked traces as a pretext task for self-supervised learning to obtain a good feature extractor. By these, this model can use all seismic data from different fields, which is different from image data as the texture-based data. With two different seismic data in turn as a meta-training set and a meta-testing set, our model works well in one- and five-shot settings, which means only one label and five labels, respectively.
    Materialart: Online-Ressource
    ISSN: 0016-8033 , 1942-2156
    RVK:
    Sprache: Englisch
    Verlag: Society of Exploration Geophysicists
    Publikationsdatum: 2023
    ZDB Id: 2033021-2
    ZDB Id: 2184-2
    SSG: 16,13
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz