Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    The Endocrine Society ; 2021
    In:  The Journal of Clinical Endocrinology & Metabolism Vol. 106, No. 4 ( 2021-03-25), p. e1827-e1836
    In: The Journal of Clinical Endocrinology & Metabolism, The Endocrine Society, Vol. 106, No. 4 ( 2021-03-25), p. e1827-e1836
    Abstract: Patients with type 2 diabetes mellitus (T2DM) have elevated plasma branched-chain amino acid (BCAA) levels. The underlying cause, however, is not known. Low mitochondrial oxidation of BCAA levels could contribute to higher plasma BCAA levels. Objective We aimed to investigate ex vivo muscle mitochondrial oxidative capacity and in vivo BCAA oxidation measured by whole-body leucine oxidation rates in patients with T2DM, first-degree relatives (FDRs), and control participants (CONs) with overweight or obesity. Design and Setting An observational, community-based study was conducted. Participants Fifteen patients with T2DM, 13 FDR, and 17 CONs were included (age, 40-70 years; body mass index, 27-35 kg/m2). Main Outcome Measures High-resolution respirometry was used to examine ex vivo mitochondrial oxidative capacity in permeabilized muscle fibers. A subgroup of 5 T2DM patients and 5 CONs underwent hyperinsulinemic-euglycemic clamps combined with 1-13C leucine-infusion to determine whole-body leucine oxidation. Results Total BCAA levels were higher in patients with T2DM compared to CONs, but not in FDRs, and correlated negatively with muscle mitochondrial oxidative capacity (r = –0.44, P & lt; .001). Consistently, whole-body leucine oxidation rate was lower in patients with T2DM vs CON under basal conditions (0.202 ± 0.049 vs 0.275 ± 0.043 μmol kg–1 min–1, P & lt; .05) and tended to be lower during high insulin infusion (0.326 ± 0.024 vs 0.382 ± 0.013 μmol kg–1 min–1, P = .075). Conclusions In patients with T2DM, a compromised whole-body leucine oxidation rate supports our hypothesis that higher plasma BCAA levels may originate at least partly from a low mitochondrial oxidative capacity.
    Type of Medium: Online Resource
    ISSN: 0021-972X , 1945-7197
    RVK:
    Language: English
    Publisher: The Endocrine Society
    Publication Date: 2021
    detail.hit.zdb_id: 2026217-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages