Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: The Journal of Clinical Endocrinology & Metabolism, The Endocrine Society, ( 2024-03-05)
    Kurzfassung: X-linked hypophosphatemia (XLHR) is the most common genetic form of hypophosphatemic rickets (HR), which is caused by phosphate regulating endopeptidase homolog X-linked (PHEX) gene mutation. At present, the genotype-phenotype relationship of XLHR and the pathogenic role of PHEX have not been fully understood. Methods In this study, we summarized clinical features in a new cohort of 49 HR patients and detected 16 novel PHEX and 5 novel non-PHEX variants. Subsequently, we studied the pathogenesis of new variants by protein expression, glycosylation analysis, subcellular localization and endopeptidase activity. Results The results showed that missense variants (Q189H and X750R) slightly reduced protein expression without obviously altering protein length and localization, whereas truncating variants significantly impaired the synthesis of PHEX and produced a shorter immature protein in cells. Interestingly, no evident correlation was observed between mutation types and clinical phenotypes. However, when we analyzed the relationship between PHEX activity and serum phosphorus level, we found that patients with low PHEX activity tended to have severe hypophosphatemia and high rickets severity score (RSS). Following this observation, we established two new knock-in XLHR mouse models with two novel Phex variants (c.T1349C and c.C426G, respectively) using CRISPR/Cas9 technology. Both mouse models demonstrated clinical manifestations of XLHR seen in patients and PhexC426G mice showed more severe phenotype than PhexT1349C mice, which further confirmed the rationality of genotype-PHEX enzymatic activity correlation analysis. Conclusion Therefore, our findings demonstrated that novel PHEX variants could disrupt protein function via affecting protein synthesis, post-translational modification, cellular trafficking and catalytic activity. Our study facilitates a better understanding of XLHR pathogenic mechanism and PHEX activity-phenotype correlation, which is of crucial importance for future diagnosis and treatment of XLHR.
    Materialart: Online-Ressource
    ISSN: 0021-972X , 1945-7197
    RVK:
    Sprache: Englisch
    Verlag: The Endocrine Society
    Publikationsdatum: 2024
    ZDB Id: 2026217-6
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz