In:
Endocrinology, The Endocrine Society, Vol. 160, No. 5 ( 2019-05-01), p. 1333-1347
Abstract:
The transcription factor forkhead box O1 (FoxO1) is a key mediator in the insulin signaling pathway and controls multiple physiological functions, including hepatic glucose production (HGP) and pancreatic β-cell function. We previously demonstrated that S256 in human FOXO1 (FOXO1-S256), equivalent to S253 in mouse FoxO1 (FoxO1-S253), is a key phosphorylation site mediating the effect of insulin as a target of protein kinase B on suppression of FOXO1 activity and expression of target genes responsible for gluconeogenesis. Here, we investigated the role of FoxO1-S253 phosphorylation in control of glucose homeostasis in vivo by generating global FoxO1-S253A/A knockin mice, in which FoxO1-S253 alleles were replaced with alanine (A substitution) blocking FoxO1-S253 phosphorylation. FoxO1-S253A/A mice displayed mild increases in feeding blood glucose and insulin levels but decreases in fasting blood glucose and glucagon concentrations, as well as a reduction in the ratio of pancreatic α-cells/β-cells per islet. FoxO1-S253A/A mice exhibited a slight increase in energy expenditure but barely altered food intake and glucose uptake among tissues. Further analyses revealed that FoxO1-S253A/A enhances FoxO1 nuclear localization and promotes the effect of glucagon on HGP. We conclude that dephosphorylation of S253 in FoxO1 may reflect a molecular basis of pancreatic plasticity during the development of insulin resistance.
Type of Medium:
Online Resource
ISSN:
1945-7170
DOI:
10.1210/en.2018-00853
Language:
English
Publisher:
The Endocrine Society
Publication Date:
2019
detail.hit.zdb_id:
2011695-0