Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Molecular Endocrinology, The Endocrine Society, Vol. 20, No. 3 ( 2006-03-01), p. 631-646
    Abstract: The growth of both normal and transformed epithelial cells of the female reproductive system is stimulated by estrogens, mainly through the activation of estrogen receptor α (ERα), which is a ligand-regulated transcription factor. The selective ER modulator tamoxifen (TAM) has been widely used as an ER antagonist in breast tumor; however, long-term treatment is associated with an increased risk of endometrial cancer. To provide new insights into the potential mechanisms involved in the agonistic activity exerted by TAM in the uterus, we evaluated the potential of 4-hydroxytamoxifen (OHT), the active metabolite of TAM, to transactivate wild-type ERα and its splice variant expressed in Ishikawa and HEC1A endometrial tumor cells, respectively. OHT was able to antagonize only the activation of ERα by 17β-estradiol (E2) in Ishikawa cells, whereas it up-regulated c-fos expression in a rapid manner similar to E2 and independently of ERα in both cell lines. This stimulation occurred through the G protein-coupled receptor named GPR30 and required Src-related and epidermal growth factor receptor tyrosine kinase activities, along with the activation of both ERK1/2 and phosphatidylinositol 3-kinase/AKT pathways. Most importantly, OHT, like E2, stimulated the proliferation of Ishikawa as well as HEC1A cells. Transfecting a GPR30 antisense expression vector in both endometrial cancer cell lines, OHT was no longer able to induce growth effects, whereas the proliferative response to E2 was completely abrogated only in HEC1A cells. Furthermore, in the presence of the inhibitors of MAPK and phosphatidylinositol 3-kinase pathways, PD 98059 and wortmannin, respectively, E2 and OHT did not elicit growth stimulation. Our data demonstrate a new mode of action of E2 and OHT in endometrial cancer cells, contributing to a better understanding of the molecular mechanisms involved in their uterine agonistic activity.
    Type of Medium: Online Resource
    ISSN: 0888-8809 , 1944-9917
    Language: English
    Publisher: The Endocrine Society
    Publication Date: 2006
    detail.hit.zdb_id: 1492112-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages