Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Disease Models & Mechanisms, The Company of Biologists
    Abstract: One diagnostic feature of craniosynostosis syndromes is mandibular dysgenesis. Using three mouse models of Apert, Crouzon, and Pfeiffer craniosynostosis syndromes, we investigated how embryonic development of the mandible is affected by fibroblast growth factor receptor 2 (FGFR2) mutations. Quantitative analysis of skeletal form at birth revealed differences in mandibular morphology between mice carrying Fgfr2 mutations and their littermates that do not carry the mutations. Murine embryos with the mutations associated with Apert syndrome in humans showed an increase in the size of the osteogenic anlagen and Meckel's cartilage (MC). Changes in the microarchitecture and mineralization of the developing mandible were visualized using histological staining. The mechanism for mandibular dysgenesis in the Apert Fgfr2+/S252W mouse resulting in the most severe phenotypic effects was further analyzed in detail and found to occur to a lesser degree in the other craniosynostosis mouse models. Laser capture microdissection and RNA-Seq analysis revealed transcriptome changes in mandibular bone at E16.5, highlighting increased expression of genes related to osteoclast differentiation and dysregulated genes active in bone mineralization. Increased osteoclastic activity was corroborated by TRAP assay and in situ hybridization of Csf1r and Itgb3. Upregulated expression of Enpp1 and Ank was validated in the mandible of Fgfr2+/S252W embryos resulting in elevated inorganic pyrophosphate concentration. Increased proliferation of osteoblasts in the mandible and chondrocytes forming MC was identified in Fgfr2+/S252W embryos at E12.5. These findings provide evidence that FGFR2 gain-of-function mutations differentially affect cartilage formation and intramembranous ossification of dermal bone contributing to mandibular dysmorphogenesis in craniosynostosis syndromes.
    Type of Medium: Online Resource
    ISSN: 1754-8411 , 1754-8403
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2019
    detail.hit.zdb_id: 2451104-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages