Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    The Company of Biologists ; 2002
    In:  Journal of Cell Science Vol. 115, No. 15 ( 2002-08-01), p. 3171-3180
    In: Journal of Cell Science, The Company of Biologists, Vol. 115, No. 15 ( 2002-08-01), p. 3171-3180
    Abstract: The tight junction protein occludin possesses four transmembrane domains,two extracellular loops, and cytoplasmic N- and C-termini. Reverse transcription-PCR analysis of human tissues, embryos and cells using primers spanning the fourth transmembrane domain (TM4) and adjacent C-terminal region revealed two products. The larger and predominant product corresponded in sequence to canonical occludin (TM4+), while the smaller product exhibited a 162 bp deletion encoding the entire TM4 and immediate C-terminal flanking region (TM4-). Examination of the genomic occludin sequence identified that the 162 bp sequence deleted in TM4-coincided precisely with occludin exon 4, strongly suggesting that TM4- is an alternative splice isoform generated by skipping of exon 4. Indeed, the reading frame of downstream exons is not affected by exclusion of exon 4. The presence of both TM4+ and TM4- occludin isoforms was also identified in monkey epithelial cells but TM4-was undetected in murine and canine tissue and cells, indicating a late evolutionary origin for this alternative splicing event. Conceptual translation of TM4- isoform predicts extracellular localisation of the C-terminus. Immunocytochemical processing of living human Caco-2 cells using a C-terminal occludin antibody revealed weak, discontinuous staining restricted to the periphery of subconfluent islands of cells, or islands generated by wounding confluent layers. In occludin immunoblots, a weak band at ∼58 kDa, smaller than the predominant band at 65 kDa and corresponding to the predicted mass of TM4- isoform, is evident and upregulated in subconfluent cells. These data suggest that the TM4- isoform may be translated at low levels in specific conditions and may contribute to regulation of occludin function.
    Type of Medium: Online Resource
    ISSN: 1477-9137 , 0021-9533
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2002
    detail.hit.zdb_id: 219171-4
    detail.hit.zdb_id: 1483099-1
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages