Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    The Company of Biologists ; 1987
    In:  Journal of Experimental Biology Vol. 131, No. 1 ( 1987-09-01), p. 69-87
    In: Journal of Experimental Biology, The Company of Biologists, Vol. 131, No. 1 ( 1987-09-01), p. 69-87
    Abstract: Proton balance is analysed in relation to the anaerobic and aerobic metabolism of carbohydrates, carbonic acids, amino acids and fat by considering oxidation, carboxylation, decarboxylation and phosphorylation reactions, as well as the influence of ammonium, on the acid—base status of animal tissues. The functional role of the adenylates, phosphagens and inorganic phosphate in acid-base balance is investigated with respect to differences in the physicochemical properties of organic and inorganic phosphates. General principles are established for different anaerobic metabolic pathways in species from several phyla. It is concluded that proton release from the substrate, which is always involved in substrate-level phosphorylations, is essential for the mechanism of ATP formation. Anaerobic metabolism, which is characterized by incomplete oxidation of carbon chains and an accumulation of acidic groups, supports pH regulation in facultative anaerobes by minimizing the amount of accumulated protons. High levels of phosphagens mean high proton absorption during hydrolysis and an increase in the intracellular buffer value. Decarboxylation reactions in catabolic pathways are equivalent to proton consumption. The degradation of carbonic acids during anaerobiosis, therefore, contributes to pH regulation. Release of ammonia or ammonium ions in catabolism is also linked to the buffering of protons originating from the formation of carboxyl groups and net cleavage of ATP. Net disposal of amino groups or ammonium ions by transamination, reductive amination or ion exchange does not change this general picture. The proton, bicarbonate and CO2 turnover in metabolic pathways is discussed with respect to the interrelationships between pH and metabolic regulation.
    Type of Medium: Online Resource
    ISSN: 0022-0949 , 1477-9145
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 1987
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages