Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    The Company of Biologists ; 1994
    In:  Journal of Experimental Biology Vol. 191, No. 1 ( 1994-06-01), p. 89-105
    In: Journal of Experimental Biology, The Company of Biologists, Vol. 191, No. 1 ( 1994-06-01), p. 89-105
    Abstract: The effects of intracellular acidification, osmotic shrinkage and (3-adrenergic stimulation on sodium transport across the membrane of lamprey (Lampetra fluviatilis) erythrocytes were investigated. Unidirectional ouabain-insensitive sodium flux, measured using radioactive 22Na, was increased markedly by intracellular acidification, to a lesser extent by osmotic shrinkage and only modestly by β-adrenergic stimulation. Na+/H+ exchange was activated in all of these cases. However, net sodium influx (and cell swelling caused by the influx of osmotically obliged water) was seen only in cells subjected to intracellular acidification. In contrast, practically no changes in red cell pH or in water or ion (Na+, K+ and Cl−) contents were seen after osmotic shrinkage or (3-adrenergic stimulation. Calculations of the [Na+]0/[Na+] i and [H+]0/[H+] i ratios across the erythrocyte membrane suggest that the virtual lack of net sodium movements in osmotically shrunken erythrocytes is due to the absence of a driving force for net transport of these ions via the Na+/H+ exchange pathway. It also appears that, in physiological conditions, the increase in the activity of the Na+/H+ exchanger by β-adrenergic stimulation is too small to mediate detectable net sodium transport.
    Type of Medium: Online Resource
    ISSN: 0022-0949 , 1477-9145
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 1994
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages