Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Medicine & Science in Sports & Exercise, Ovid Technologies (Wolters Kluwer Health), Vol. 55, No. 7 ( 2023-7), p. 1184-1194
    Abstract: A ketone body (β-hydroxybutyrate [β-HB]) is used as an energy source in the peripheral tissues. However, the effects of acute β-HB supplementation on different modalities of exercise performance remain unclear. This study aimed to assess the effects of acute β-HB administration on the exercise performance of rats. Methods In study 1, Sprague–Dawley rats were randomly divided into six groups: endurance exercise (EE + PL and EE + KE), resistance exercise (RE + PL and RE + KE), and high-intensity intermittent exercise (HIIE + PL and HIIE + KE) with placebo (PL) or β-HB salt (KE) administration. In study 2, metabolome analysis using capillary electrophoresis mass spectrometry was performed to profile the effects of β-HB salt administration on HIIE-induced metabolic responses in the skeletal and heart muscles. Results The maximal carrying capacity (rest for 3 min after each ladder climb, while carrying heavy weights until the rats could not climb) in the RE + KE group was higher than that in the RE + PL group. The maximum number of HIIE sessions (a 20-s swimming session with a 10-s rest between sessions, while bearing a weight equivalent to 16% of body weight) in the HIIE + KE group was higher than that in the HIIE + PL group. However, there was no significant difference in the time to exhaustion at 30 m·min −1 between the EE + PL and the EE + KE groups. Metabolome analysis showed that the overall tricarboxylic acid cycle and creatine phosphate levels in the skeletal muscle were higher in the HIIE + KE group than those in the HIIE + PL group. Conclusions These results indicate that acute β-HB salt administration may accelerate HIIE and RE performance, and the changes in metabolic responses in the skeletal muscle after β-HB salt administration may be involved in the enhancement of HIIE performance.
    Type of Medium: Online Resource
    ISSN: 1530-0315 , 0195-9131
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2023
    detail.hit.zdb_id: 2031167-9
    SSG: 31
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages