Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Institute for Operations Research and the Management Sciences (INFORMS) ; 2022
    In:  Information Systems Research Vol. 33, No. 2 ( 2022-06), p. 399-412
    In: Information Systems Research, Institute for Operations Research and the Management Sciences (INFORMS), Vol. 33, No. 2 ( 2022-06), p. 399-412
    Kurzfassung: Demand-side platforms (DSPs) that purchase digital ad space using real-time bidding (RTB) systems employ “black-box” performance optimizers to adjust bids at run time. Advertisers using field experiments to estimate the marginal value of display ads need to contend with the selective targeting of users by optimizers that adjust bids to target users with a greater propensity to respond favorably (i.e., click or conversion). In this paper, we propose an alternative approach for advertisers who choose to bypass their DSP’s performance optimizers for the purpose of assessing the value of their ads. We show that external frequency caps that set upper limits on the number of ad impressions outside the purview of bidding algorithms can serve as a suitable instrumental variable. Eliminating performance optimizers allows the advertiser to value ads without relying on the support services of the DSP with the added benefit of a broader customer reach and a markedly lower cost. As the focal advertiser disables performance optimizers, any overbidding or underbidding vis-à-vis competition that employs them results in a negative correlation between the numbers of ad impressions won and their underlying quality in real time. Using two large-scale randomized field experiments in different geographies (United States and Asia) and different devices (PC and mobile), we validate the proposed approach and report a positive effect of ad impression count after adjusting for net negative bias.
    Materialart: Online-Ressource
    ISSN: 1047-7047 , 1526-5536
    Sprache: Englisch
    Verlag: Institute for Operations Research and the Management Sciences (INFORMS)
    Publikationsdatum: 2022
    ZDB Id: 2027203-0
    SSG: 3,2
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz