Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    River Publishers ; 2023
    In:  Journal of Web Engineering ( 2023-03-19)
    In: Journal of Web Engineering, River Publishers, ( 2023-03-19)
    Kurzfassung: Web service recommendation remains a highly demanding yet challenging task in the field of services computing. In recent years, researchers have started to employ side information comprised in a heterogeneous Web service ecosystem to address the issues of data sparsity and cold start in Web service recommendation. Some recent works have exploited the deep learning techniques to learn user/Web service representations accumulating information from multiplex sources. However, we argue that they still struggle to utilize multi-source information in a discriminating, unified and flexible manner. To tackle this problem, this paper presents a novel multi-source information graph-based Web service recommendation framework (MGASR), which can automatically and efficiently extract multifaceted knowledge from the heterogeneous Web service ecosystem. Specifically, different node-type and edge-type dependent parameters are designed to model corresponding types of objects (nodes) and relations (edges) in the Web service ecosystem. We then leverage graph neural networks (GNNs) with an attention mechanism to construct a multi-source information neural network (MIN) layer, for mining diverse significant dependencies among nodes. By stacking multiple MIN layers, each node can be characterized by a highly contextualized representation due to capturing high-order multi-source information. As such, MGASR can generate representations with rich semantic information toward supporting Web service recommendation tasks. Extensive experiments conducted over three real-world Web service datasets demonstrate the superior performance of our proposed MGASR as compared to various baseline methods.
    Materialart: Online-Ressource
    ISSN: 1544-5976 , 1540-9589
    Sprache: Unbekannt
    Verlag: River Publishers
    Publikationsdatum: 2023
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz