Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Bone and Mineral Research, Wiley, Vol. 25, No. 4 ( 2010-04), p. 891-900
    Abstract: Strontium ranelate (SrR) is a relatively new treatment for osteoporosis. In this study we investigated its potential impact on human bone material quality in transiliac bone biopsies from postmenopausal osteoporotic women treated 3 years with calcium and vitamin D plus either 2 g SrR per day or placebo. Bone mineralization density distribution (BMDD), strontium (Sr) concentration, collagen cross‐link ratio, and indentation modulus were analyzed by quantitative backscattered electron imaging, electron‐induced X‐ray fluorescence analysis, synchrotron radiation induced micro X‐ray fluorescence elemental mapping, Fourier transform infrared imaging, and nanoindentation, respectively. The BMDD of SrR‐treated patients was shifted to higher atomic numbers ( Z mean +1.5%, p   〈  .05 versus placebo). We observed Sr being preferentially incorporated in bone packets formed during SrR treatment up to 6% atom fraction [Sr/(Sr + Ca)] depending on the SrR serum levels of the individuals (correlation r  = 0.84, p  = .018). Collagen cross‐link ratio was preserved in SR‐treated bone. The indentation modulus was significantly decreased in younger versus older bone packets for both placebo‐ (−20.5%, p   〈  .0001) and SrR‐treated individuals (−24.3%, p   〈  .001), whereas no differences were found between the treatment groups. In conclusion, our findings indicate that after SrR treatment, Sr is heterogeneously distributed in bone and preferentially present in bone packets formed during treatment. The effect of SrR on BMDD seems to be due mainly to the uptake of Sr and not to changes in bone calcium content. Taken together, these data provide evidence that the investigated bone quality determinants at tissue level were preserved in postmenopausal osteoporotic women after 3‐year treatment with 2 g SrR per day plus calcium and vitamin D. © 2010 American Society for Bone and Mineral Research
    Type of Medium: Online Resource
    ISSN: 0884-0431 , 1523-4681
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2010
    detail.hit.zdb_id: 2008867-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages