Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    SAGE Publications ; 2009
    In:  Applied Spectroscopy Vol. 63, No. 10 ( 2009-10), p. 1107-1114
    In: Applied Spectroscopy, SAGE Publications, Vol. 63, No. 10 ( 2009-10), p. 1107-1114
    Abstract: We have developed a rapid, sensitive, and quantitative method for identification of microRNA (miRNA) sequences in multicomponent mixtures using surface-enhanced Raman spectroscopy (SERS). The method uses Ag nanorod array substrates prepared by oblique angle vapor deposition as the SERS platform. We show that Ag nanorod-based SERS spectra are uniquely characteristic for each miRNA sequence studied, and that the spectral reproducibility is sufficient for quantitative analysis of miRNA profiles in multicomponent mixtures using partial least squares (PLS) regression analysis. This method was applied to individual sample mixtures consisting of two, three, and five miRNAs. Separate PLS models were generated for the two-, three-, and five-component mixtures from 〉 150 calibration spectra covering a concentration range of 6 to 150 μM for each miRNA. The PLS models were externally validated with independent test samples resulting in root mean square errors of prediction (RMSEP) of 7.4, 〈 7.4, and 〈 10 μM for the two-, three-, and five-component models, respectively. These results demonstrate the applicability of SERS for quantitative detection and profiling of miRNAs and suggest that SERS may prove to be a novel, label-free method for identification of disease biomarkers.
    Type of Medium: Online Resource
    ISSN: 0003-7028 , 1943-3530
    RVK:
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2009
    detail.hit.zdb_id: 1474251-2
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages