Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Applied Spectroscopy, SAGE Publications, Vol. 68, No. 2 ( 2014-02), p. 213-221
    Abstract: Leakage of injected carbon dioxide (CO 2 ) or resident fluids, such as brine, is a major concern associated with the injection of large volumes of CO 2 into deep saline formations. Migration of brine could contaminate drinking water resources by increasing their salinity or endanger vegetation and animal life as well as human health. The main objective of this study was to investigate the effect of sodium chloride (NaCl) concentration on the detection of calcium and potassium in brine samples using laser-induced breakdown spectroscopy (LIBS). The ultimate goals were to determine the suitability of the LIBS technique for in situ measurements of metal ion concentrations in NaCl-rich solution and to develop a chemical sensor that can provide the early detection of brine intrusion into formations used for domestic or agricultural water production. Several brine samples of NaCl–CaCl 2 and NaCl–KCl were prepared at NaCl concentrations between 0.0 and 3.0 M. The effect of NaCl concentration on the signal-to-background ratio (SBR) and signal-to-noise ratio (SNR) for calcium (422.67 nm) and potassium (769.49 nm) emission lines was evaluated. Results show that, for a delay time of 300 ns and a gate width of 3 μs, the presence of and changes in NaCl concentration significantly affect the SBR and SNR for both emission lines. An increase in NaCl concentration from 0.0 to 3.0 M produced an increase in the SNR, whereas the SBR dropped continuously. The detection limits obtained for both elements were in the milligrams per liter range, suggesting that a NaCl-rich solution does not severely limit the ability of LIBS to detect trace amount of metal ions.
    Type of Medium: Online Resource
    ISSN: 0003-7028 , 1943-3530
    RVK:
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2014
    detail.hit.zdb_id: 1474251-2
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages