Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    International Journal of Particle Therapy ; 2022
    In:  International Journal of Particle Therapy Vol. 8, No. 3 ( 2022-01-01), p. 11-20
    In: International Journal of Particle Therapy, International Journal of Particle Therapy, Vol. 8, No. 3 ( 2022-01-01), p. 11-20
    Kurzfassung: To determine whether self-attention cycle-generative adversarial networks (cycle-GANs), a novel deep-learning method, can generate accurate synthetic computed tomography (sCT) to facilitate adaptive proton therapy in children with brain tumors. Materials and Methods Both CT and T1-weighted magnetic resonance imaging (MRI) of 125 children (ages 1-20 years) with brain tumors were included in the training dataset. A model introducing a self-attention mechanism into the conventional cycle-GAN was created to enhance tissue interfaces and reduce noise. The test dataset consisted of 7 patients (ages 2-14 years) who underwent adaptive planning because of changes in anatomy discovered on MRI during proton therapy. The MRI during proton therapy-based sCT was compared with replanning CT (ground truth). Results The Hounsfield unit-mean absolute error was significantly reduced with self-attention cycle-GAN, as compared with conventional cycle-GAN (65.3 ± 13.9 versus 88.9 ± 19.3, P  & lt; .01). The average 3-dimensional gamma passing rates (2%/2 mm criteria) for the original plan on the anatomy of the day and for the adapted plan were high (97.6% ± 1.2% and 98.9 ± 0.9%, respectively) when using sCT generated by self-attention cycle-GAN. The mean absolute differences in clinical target volume (CTV) receiving 95% of the prescription dose and 80% distal falloff along the beam axis were 1.1% ± 0.8% and 1.1 ± 0.9 mm, respectively. Areas of greatest dose difference were distal to the CTV and corresponded to shifts in distal falloff. Plan adaptation was appropriately triggered in all test patients when using sCT. Conclusion The novel cycle-GAN model with self-attention outperforms conventional cycle-GAN for children with brain tumors. Encouraging dosimetric results suggest that sCT generation can be used to identify patients who would benefit from adaptive replanning.
    Materialart: Online-Ressource
    ISSN: 2331-5180
    Sprache: Englisch
    Verlag: International Journal of Particle Therapy
    Publikationsdatum: 2022
    ZDB Id: 2846890-9
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz