Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Physiological Reports, Wiley, Vol. 5, No. 6 ( 2017-03)
    Abstract: Sex‐specific differences in mitochondrial function and free radical homeostasis are reported in the context of aging but not well‐established in pathogeneses occurring early in life. Here, we examine if sex disparity in mitochondria function, morphology, and redox status starts early and hence can be implicated in sexual dimorphism in cardiac as well as neurological disorders prevalent at young age. Although mitochondrial activity in the heart did not significantly vary between sexes, female brain exhibited enhanced respiration and higher reserve capacity. This was associated with lower H 2 O 2 production in female cardiac and brain tissues. Using transmission electron microscopy, we found that the number of female cardiac mitochondria is moderately greater (117 ± 3%, P  = 0.049, N  = 4) than male's, which increased significantly for cortical mitochondria (134 ± 4%, P  = 0.001, N  = 4). However, male's cardiac mitochondria exhibited fragmented, circular, and smaller mitochondria relative to female's mitochondria, while no morphologic sex‐dependent differences were observed in cortical mitochondria. No sex differences were detected in Nox2 and Nox4 proteins or O 2 ‐consuming/H 2 O 2 ‐producing activities in brain homogenate or synaptosomes. However, a strong trend of increased EPR ‐detected NOX superoxide in male synaptosomes hinted at higher superoxide dismutase activity in female brains, which was confirmed by two independent protocols. We also provide direct evidence that respiring mitochondria generally produce an order‐of‐magnitude lower reactive oxygen species ( ROS ) proportions than currently estimated. Our results indicate that sex differences in mitochondrial biogenesis, bioenergetics, and morphology may start at young age and that sex‐dependent SOD capacity may be responsible for differences in ROS homeostasis in heart and brain.
    Type of Medium: Online Resource
    ISSN: 2051-817X , 2051-817X
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2724325-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages